Listing 2. If you’re wondering about the “a =” that precedes the RS-232 function calls, it’s there because the RS-232 function calls return an error/completion code. I used the returned completion code to determine if a character was actually received (if(a == ERR_OK)). All of the possible error/completion codes are outlined in the RS-232 function’s text in the RS232.c file.

void main(void)

{

 //Peter Added This

 unsigned int x,y;

 byte recv_char; //received char

 byte *recv_char_pointer; //pointer to received char

 byte a,flipper;

 //End Peter Added Stuff

 /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/

 PE_low_level_init();

 /*** End of Processor Expert internal initialization. ***/

 /* Write your code here */

 //Peter Added This

 recv_char_pointer = &recv_char; //point to incoming character mem location

 flipper = 0; //init the LED blinker flipper

 //Echo Incoming Character

 for(;;) { //do forever

 a = RS232_RecvChar(recv_char_pointer); //look for character in receive buffer

 if(a == ERR_OK) //if character present

 a = RS232_SendChar(recv_char); //echo the incoming character

 //LED Blinker Code

 if(flipper ^= 0xFF) //XOR flipper with 0xFF = 0x00 or 0xFF

 LED_BIT_SetVal(); //blink the LED accordingly

 else

 LED_BIT_ClrVal();

 for(x=0;x<0xFFFF;++x) {

 ++y;

 }

 }

 //End Peter Added Stuff

 /*** Processor Expert end of main routine. DON'T MODIFY THIS CODE!!! ***/

 for(;;){}

 /*** Processor Expert end of main routine. DON'T WRITE CODE BELOW!!! ***/

} /*** End of main routine. DO NOT MODIFY THIS TEXT!!! ***/

/* END nutsvolts */
